Investigation of the Local Lattice Structure and the Effects of the Orbital Reduction Factor on the g Factors of a Trigonal $[Ni(H_2O)_6]^{2+}$ Cluster in $NiTiF_6 \cdot 6H_2O$ and $ZnSiF_6 \cdot 6H_2O$ Crystals at Different Temperatures

Hui-Fang Li^a, Xiao-Yu Kuang^{a,b}, Huai-Qian Wang^a, and Ai-Jie Mao^a

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China ^b International Centre for Materials Physics, Academia Sinica, Shenyang 110016, China

Reprint requests to H.-F. L.; E-mail: scu_kxy@163.com

Z. Naturforsch. **63a**, 609 – 615 (2008); received March 10, 2008

The local octahedral environment of Ni²⁺ in NiTiF₆ · 6H₂O and ZnSiF₆ · 6H₂O crystals with a trigonal distortion has been studied at different temperatures, based on the complete energy matrices. The calculated results showed that the local lattice structure around an octahedral Ni²⁺ centre in NiTiF₆ · 6H₂O and ZnSiF₆ · 6H₂O exhibits a compression distortion. Simultaneously, the orbital reduction effect on the g factors has been studied. The relationship between $\Delta g = g_{\parallel} - g_{\perp}$ and orbital reduction factor k at 4.2, 77 and 298 (302) K has been discussed, suggesting that there is an almost linear relation between k and Δg for the Ni²⁺ ion in NiTiF₆ · 6H₂O and ZnSiF₆ · 6H₂O at each temperature.

Key words: Local Structure; Orbital Reduction Effect; EPR Spectrum; Complete Energy Matrices.